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For materials where a spontaneously fissioning isotope (e.g. 238U or 240Pu) initiates fission chains
which propagate within a quantity of fissile material (e.g. 235U or 239Pu), the neutrons are not
generated according to a Poisson process because a single random event — the spontaneous fission of
a radioactive nucleus — can generate many neutrons. We propose a perturbative theory to correct
the time interval distribution between neutron counts for materials that spontaneously generate
fission chains to accommodate the detector dead time inherent in 3He proportional counters. We
also propose a perturbative correction for multi-element detectors where the dead time applies only
to neutrons counted within a single element.

I. INTRODUCTION

For a process that generates events as a function of
time according to a Poisson distribution, the probability
distribution of waiting times from some particular event
to the next event is

I0(T ) dT = e−R1TR1 dT (1)

which is recognized as the exponential distribution. An
interesting extension of the Poisson process is the prob-
lem of neutron detection where, after a count has been
recorded, the detector has an inherent dead time δ. When
a neutron enters a 3He proportional counter, for example,
a series of processes must occur inside the detector and
its associated electronics for the count to be registered.
These processes happen over a non-zero amount of time
during which no other count can be registered, even if
another neutron happens to enter the detector. Under
certain circumstances, this dead time cannot reasonably
be approximated as zero. For the case of a Poisson source
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with dead time, the time interval distribution from some
particular neutron to the next neutron is then given by
an exponential distribution shifted by δ for T > δ, and
zero for T ≤ δ. Thus,

J0(T ) dT =
θ(T − δ)I0(T ) dT∫∞

δ
I0(T ) dT

(2)

= θ(T − δ)e−R1(T−δ)R1 dT (3)

where θ(x) is the Heaviside or unit step function [1] and
ensures that J0(T ) = 0 for T ≤ δ.

Fissile materials, however, do not generate neutrons
according to a Poisson distribution [2]; because they sup-
port fission chains, a single event — the spontaneous fis-
sion of a radioactive nucleus — can generate many neu-
trons. A theory for the time interval distribution be-
tween counts for material spontaneously generating fis-
sion chains has been given by Prasad et al. [3]. In this
paper, we propose a perturbative correction to this the-
ory to take dead time into account.

II. NEUTRON TIME INTERVAL
DISTRIBUTIONS

Consider a multiplying system where a spontaneously
fissioning isotope (e.g. 238U or 240Pu) initiates fission
chains which propagate within a quantity of fissile mate-
rial (e.g. 235U or 239Pu). The system experiences spon-
taneous fissions at a rate of FS. Each spontaneous fission
has a probability CSν to create ν neutrons and creates on
average νS neutrons. These neutrons, each with proba-
bility p, go on to induce fissions in the fissile material. An
induced fission similarly has a probability Cν to create
ν neutrons and creates on average ν neutrons. The sys-
tem thus multiplies the initial neutrons from each spon-
taneous fission by an average factor

M =
1

1− pν
(4)
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The escape multiplication Me is this number less the av-
erage number of neutrons required to sustain the fission
chain (equal to the average number of induced fissions in
the chain) and is readily seen to be

Me = (1− p)M (5)

The detection efficiency ε is the probability to count a
neutron which has left the system either through non-
fission absorption or leakage. The count rate for a mul-
tiplying system is then

R1 = ε FS νSMe (6)

A fission chain initiated by an induced fission from a
single neutron has a probability distribution Pn to create
n neutrons. The generating function /P(y) for this prob-
ability distribution can be constructed in the usual way
by multiplying Pn by yn and summing over n,

/P(y) =

∞∑
n=0

Pnyn (7)

It has been shown that this generating function satisfies
the equation [4]

/P(y) = (1− p)y + p/C
[
/P(y)

]
(8)

where

/C(x) =

∞∑
ν=0

Cνx
ν (9)

is the generating function for the neutron multiplicity
distribution for induced fission. The solution to Eq. 8
was shown to be [5]

/P(y) = (1− p)y +

∞∑
k=1

Pp(k|n+ k)

k + n

[
/C(y)

]k
(10)

where the quantity k has the interpretation of the total
number of fissions in the fission chain and where

Pp(k|n+ k) =
(k + n)!

k!n!
pk(1− p)n (11)

is the binomial distribution. The probability distribu-
tion Pn is then the coefficients on yn in the expansion of
the function /P(y) as a power series about the origin [6],
denoted

Pn = [yn] /P(y) (12)

Given the generating function for the fission chain neu-
tron multiplicity distribution /P(y) and the neutron mul-
tiplicity distribution for spontaneous fission CSν , it is
then possible to calculate the fission chain neutron multi-
plicity distribution for fission chains initiated by sponta-
neous fission, PSn. Each neutron created by the spon-
taneous fission is capable — with probability p — of
causing a subsequent fission, and by extension, a fission
chain with a neutron multiplicity distributed according
to Pn. The generating function for the distribution PSn

was shown to be [5]

/PS(y) = /CS[/P(y)] (13)

and, again, the probability distribution PSn =
[yn] /PS(y).

The probability to count m neutrons from a fission
chain is then [7]

em(ε) =

∞∑
n=m

PSn

(
n
m

)
εm(1− ε)n−m (14)

The probability that no additional neutrons from the
same fission chain are counted within a time T after some
particular neutron gets counted is [8]

r0(T ) =
FS

R1

∞∑
m=1

em(ε)

(
n−1∑
k=0

e−kλT

)
(15)

where neutrons from the same fission chain diffuse on a
time scale of λ−1 before being detected. During a time
interval T , the average number of instances of counting
k neutrons coming from the same fission chain is [7]

Λk(T ) =

∞∑
n=k

PSn

n∑
m=k

(
n
m

)
εm(1− ε)n−m

(
m
k

)

×


∫ 0

−∞

[∫ T

0

e−λ(t−s)λ dt

]k [
1−

∫ T

0

e−λ(t−s)λ dt

]m−k
FS ds

+

∫ T

0

[∫ T

s

e−λ(t−s)λ dt

]k [
1−

∫ T

s

e−λ(t−s)λ dt

]m−k
FS ds

 (16)

under the (usually reliable) approximation that a fission chain happens instantaneously. Evaluating the integrals
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yields

Λk(T ) = FS

∞∑
n=k

PSn

n∑
m=k

(
n
m

)
εm(1− ε)n−m

(
m
k

){
1

λ
B[(1− e−λT ); k, m− k + 1]

− 1

λ

k−1∑
j=0

B[(1− e−λT ); k − j, m− k + 1] + (1− δkm)
1− e−λT (m−k)

λ(m− k)
+ δkmT

}
(17)

where B(z; a, b) is the incomplete beta function [1].

The probability to count no neutrons during a random
time interval T is [7]

b0(T ) = e−(
∑∞

k=1 Λk) (18)

and the probability that no additional neutrons are
counted within a time T after some particular neutron
gets counted is [8]

n0(T ) = r0(T )b0(T ) (19)

It has been shown that the probability distribution of
waiting times from some particular count to the next

count for a multiplying source is [3]

I0(T ) dT =
FS

R1

∞∑
m=2

em(ε)

(
n−1∑
k=1

ke−kλT

)
b0(T )λ dT

+r0(T )n0(T )R1 dT (20)

In Eq. 20, the first term is associated with adjacent
counts coming from the same fission chain and the sec-
ond term is associated with adjacent counts coming from
different chains.

III. NEUTRON TIME INTERVAL
DISTRIBUTIONS WITH DEAD TIME

We propose a perturbative correction to Eq. 20 to
account for dead time. Up to a normalization factor, the
time interval distribution from some particular neutron
to the next neutron can be calculated from Eq. 20 as

I ′0(T ) dT = dT θ(T − δ)

{
I0(T ) +

∫ δ

0

I0(t) [I0(T − t)− I0(T )] dt

+

∫ δ

0

I0(t)

∫ δ−t

0

I0(u) [I0(T − t− u)− I0(T )] du dt+ · · ·

}
(21)

where the zeroth-order, first-order, and second-order cor-
rections have been explicitly written out. This can be
normalized in the usual way as

J0(T ) dT =
I ′0(T ) dT∫∞
δ
I ′0(T ) dT

(22)

To zeroth-order, the distribution is merely I0(t) dT for
T > δ and with the normalization correspondingly ad-
justed. The first-order correction, however, takes into
account the case where the next neutron enters the de-
tector a time t after the original neutron but within the
dead time such that t ≤ δ, and the next-to-next neutron
enters a time T after the original neutron — or (T − t)
after the next neutron — outside the dead time such that
T > δ. Because the next neutron entered the detector
within the dead time, the observed time-to-next is no
longer t and (T − t), but rather becomes only the actual

time-to-next-to-next T . Thus, the probability that the
next neutron is detected between T and T + dT gets in-
creased by an amount proportional to I0(t) × I0(T − t).
But it’s not that simple because, in exactly the same
way, the probability that the next neutron is detected
between (T + t) and (T + t) + dT also gets increased by
an amount proportional to I0(t) × I0(T ). However, the
probability that the next neutron is detected between T
and T + dT gets corresponding decreased by exactly this
amount. This is shown conceptually in Figure 1.

Higher order corrections follow the same pattern: The
second-order correction takes into account the case where
both the next and the next-to-next neutrons enter the de-
tector within the dead time, but the next-to-next-to-next
neutron enters the detector outside of the dead time. A
similar reshuffling of probability naturally results. The
third-order correction has three neutrons entering the de-
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FIG. 1. In the first order correction, dead time causes the
probability I0(T ) dT to gain probability from I0(T−t) dT but
lose probability to I0(T + t) dT as the observed time-to-next
is replaced with the actual time-to-next-to-next.

tector within the dead time, but the fourth entering out-
side the dead time, and so on.

IV. MULTIPLE-ELEMENT DETECTORS

Using similar reasoning as above, we can extend the
theory to correct for dead time in neutron detector sys-

tems with multiple elements where the dead time only ap-
plies to an individual element within the detector. That
is to say, only successive neutrons counted by the same
detector element experience the effects of dead time. As
an example, the Ortec Fission Meter neutron multiplic-
ity counter employs 30 3He tubes, and the dead time per
tube is known to be ∼ 1 µs [9].

For a detector system with Ntubes elements, and mak-
ing the approximation that all elements within the de-
tector system have the same detection efficiency, we can
define

ε =
1

Ntubes
(23)

Up to the normalization factor, the time interval distri-
bution from some particular neutron to the next for a
multiple element detector system can be calculated from
Eq. 20 as

I ′0(T ) dT = (1− ε)I0(T ) dT

+dT θ(T − δ)

{
εI0(T ) + ε2

∫ δ

0

I0(t) [I0(T − t)− I0(T )] dt

+ ε3

∫ δ

0

I0(t)

∫ δ−t

0

I0(u) [I0(T − t− u)− I0(T )] du dt+ · · ·

}

+dT (1− ε)

{
ε

∫ δ

0

I0(t) [I0(T − t)− I0(T )] dt

+ ε2

∫ δ

0

I0(t)

∫ δ−t

0

I0(u) [I0(T − t− u)− I0(T )] du dt+ · · ·

}
(24)

where the zeroth-order, first-order, and second-order cor-
rections have been explicitly written out. The term in the
first set of curly brackets is the case where all the counts
occur within the same detector element. This term is
similar to the above case for a single-element detector
system except that each term is adjusted by the prob-
ability that, given a count within a particular element,
the following counts all occur, each with probability ε,
within the same element. The term in the second set
of curly brackets covers the case where all counts but
the last occur, each with probability ε, within the same
detector element while the last count occurs, with prob-
ability (1 − ε), within a different element. Note that in
this term, T is unrestricted, and indeed the region T ≤ δ

is important. This distribution can again be normalized
in the usual way with Eq. 22.

V. MONTE CARLO SIMULATIONS

If we want to generate waiting times δt between
random events, we simply apply the inverse transform
method [10] to the exponential distribution, Eq. 1. Start-
ing with a random number u which is uniformly dis-
tributed on [0, 1], the waiting time is then

δt = − lnu

r
(25)
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Source
mass FS

M Me
ε λ−1 Observation Number of Count Rate

(kg) (s−1) (%) (µs) Time Neutrons (s−1)

50 kg DU/HEU 238U: 50 338.9 2 1.6 2 hours 241,502 33.5

46 kg HEU 238U: 3.22 21.8 20 12.5
3 50

2 hours 119,432 16.6

6 kg WGPu 240Pu: 0.36 1.7 × 105 6.67 5.0 3 min 9,508,143 5.9 × 104

10 kg RGPu 240Pu: 2.5 9.1 × 105 10 7.0 1 min 24,768,231 4.1 × 105

TABLE I. Monte Carlo input parameters for each source.

Consider a fission chain which produces n neutrons.
The probability of detecting exactly m neutrons out of
the possible n, if the probability of detection is ε, is again
just the binomial distribution Pε(m|n), Eq. 11. The
fission chain neutron multiplicity PSn is the probability
that a fission chain initiated by spontaneous fission gener-
ates n neutrons. The probability of detecting m neutrons
from such a fission chain, when the detection efficiency
is ε, is em(ε), Eq. 14. The rate of detecting m neutrons
from a single fission chain is then the spontaneous fission
rate FS times this probability,

rm = FS em(ε) (26)

Fission chains in which m = 1, 2, 3, · · · neutrons are
detected can be considered as different kinds of events,
and each can be considered individually. The rates rm
can be used to generate waiting times between events
where an “event” is a fission chain in which m neutrons
were detected. From Eq. 25, a list of times of fission
chain initiations is generated as

tm,i = δtm,i + tm,i−1 (27)

= − lnui
rm

+ tm,i−1 (28)

with tm,0 = 0. Iteration is stopped once tm,i exceeds the
observation time.

The neutron does not get detected the instant it is cre-
ated in the fission, however. The neutron lifetime against
detection λ−1 represents the time scale for the neutron
to move from the site of the fission chain out to the de-
tector. Thus, for each tm,i, a second list of waiting times
δτj , j = 1, 2, · · · , m must be generated according to

δτj = − lnuj
λ

(29)

The neutron detection times tm,k are thus

tm,k = tm,i + δτj (30)

k = m(i− 1) + j (31)

To produce the final list of detection times, all the tm,k
must simply be combined and then sorted. In this way,

time-tagged neutron data for multiplying sources can be
produced quickly.

Dead time was then added by recursively removing
count times from the list of time-tagged neutron data:
starting with the first neutron, if the waiting time from
the last surviving count time to the next count time was
less than the detector dead time, this count time was
removed from the list of time-tagged data.

For multiple element detectors, each count time was
assigned a random tube number chosen from a uniform
distribution. Dead time was then added in the same way
except that for a count time to be removed from the list
of time-tagged data, both the count in question and the
last surviving count had to share the same tube number.

Monte Carlo simulations were done for four sources: 50
kg 238U (DU) driving 235U with multiplication M = 2,
46 kg highly enriched uranium (HEU) (93% 235U, 7%
238U) with multiplication M = 20, 6 kg weapons-grade
plutonium (94% 239Pu, 6% 240Pu) with multiplication
M = 6.67, and 10 kg reactor-grade plutonium (94%
239Pu, 6% 240Pu) with multiplication M = 10. The input
parameters for the Monte Carlo simulations are show in
Table I. Values for Cn and CSn used in both the Monte
Carlo simulations and in Eqs. 9 and 13 are shown in
Table II.

For a single-element detector with dead time, plots
comparing the distributions computed from Eqs. 20, and
21 and 22 to the distributions resulting from the Monte
Carlo simulations are shown for the four sources in Fig-
ures 2, 3, 4, and 5. For a two-element detector with dead
time, plots comparing the distributions computed from
Eqs. 20, and 24 and 22 to the distributions resulting
from the Monte Carlo simulations are shown for the four
sources in Figures 6, 7, 8, and 9.
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Cn CSn

235U 239Pu 238U 240Pu

0 0.0238 0.0085 0.0831 0.0632

1 0.1556 0.0790 0.2370 0.2320

2 0.3217 0.2536 0.3377 0.3333

3 0.3150 0.3290 0.2403 0.2528

n 4 0.1445 0.2328 0.0854 0.0986

5 0.0356 0.0800 0.0152 0.0180

6 0.0034 0.0156 0.0013 0.0020

7 0.0005 0.0012

8 0.0003

TABLE II. Values for Cn and CSn for uranium and plutonium.
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FIG. 2. Comparison of theory and simulated data with and without dead time for a neutron source comprised of 50 kg of DU
driving HEU with M = 2. The dead time was set to 47 µs in order to maximize its effects on the distribution. Dead time
corrections were carried out to third-order.
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FIG. 3. Comparison of theory and simulated data with and without dead time for a neutron source comprised of 46 kg of HEU
with M = 20. The dead time was set to 10 µs in order to maximize its effects on the distribution. Dead time corrections were
carried out to third-order.
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FIG. 4. Comparison of theory and simulated data with and without dead time for a neutron source comprised of 6 kg of WGPu
(6% 240Pu) with M = 6.67. The dead time was set to 3 µs in order to maximize its effects on the distribution. Dead time
corrections were carried out to third-order.
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FIG. 5. Comparison of theory and simulated data with and without dead time for a neutron source comprised of 10 kg of
RGPu (25% 240Pu) with M = 10. The dead time was set to 1 µs in order to maximize its effects on the distribution. Dead
time corrections were carried out to third-order.
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FIG. 6. Comparison of theory and simulated data for a two-element neutron detector with and without dead time for a neutron
source comprised of 50 kg of DU driving HEU with M = 2. The dead time was set to 47 µs in order to maximize its effects on
the distribution. Dead time corrections were carried out to third-order.
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FIG. 7. Comparison of theory and simulated data for a two-element neutron detector with and without dead time for a neutron
source comprised of 46 kg of HEU with M = 20. The dead time was set to 10 µs in order to maximize its effects on the
distribution. Dead time corrections were carried out to third-order.
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FIG. 8. Comparison of theory and simulated data for a two-element neutron detector with and without dead time for a neutron
source comprised of 6 kg of WGPu (6% 240Pu) with M = 6.67. The dead time was set to 3 µs in order to maximize its effects
on the distribution. Dead time corrections were carried out to third-order.
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FIG. 9. Comparison of theory and simulated data for a two-element neutron detector with and without dead time for a neutron
source comprised of 10 kg of RGPu (25% 240Pu) with M = 10. The dead time was set to 1 µs in order to maximize its effects
on the distribution. Dead time corrections were carried out to third-order.


